Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We synthesized single crystals for Mn2-xZnxSb (0 ≤ x ≤ 1) and studied their magnetic and electronic transport properties. This material system displays rich magnetic phase tunable with temperature and Zn composition. In addition, two groups of distinct magnetic and electronic properties, separated by a critical Zn composition of x = 0.6, are discovered. The Zn-less samples are metallic and characterized by a resistivity jump at the magnetic ordering temperature, while the Zn-rich samples lose metallicity and show a metal-to-insulator transition-like feature tunable by magnetic field. Our findings establish Mn2-xZnxSb as a promising material platform that offers opportunities to study how the coupling of spin, charge, and lattice degrees of freedom governs interesting transport properties in 2D magnets, which is currently a topic of broad interest.more » « less
-
Plasmon coupling and hybridization in 2D materials plays a significant role for controlling light–matter interaction at the nanoscale. We present a near-field radiation heat transfer (NFRHT) between vertically separated graphene and black phosphorene sheets at different temperatures in nanoscale separations. Radiation exchange from the theory of fluctuation electrodynamics is modulated by the carrier density of graphene and phosphorene. Direct comparison of NFRHT black phosphorene–graphene to symmetric graphene–graphene radiation exchange can be as much as 4 times higher for the selected doping range in both armchair (AC) and zigzag (ZZ) orientations of BP. The strong NFRHT enhancement of the specific optical properties of the heterogenous 2D material is due to the strong coupling of propagating surface plasmon polaritons as demonstrated by the distribution of the heat transfer coefficient. We also demonstrate that the magnitude of the near-field radiation enhancement is found to acutely depend on the vacuum gap of the graphene and BP pair. Interestingly, for separation distances below 200 nm, the total near-field heat transfer between black phosphorene and graphene exceeds that between graphene and graphene by 5 times. The radiation enhancement can be further tuned based on the orientation, AC, and ZZ of black phosphorene. These results prominently enable dynamic control of the total NFRHT relying on tunable anisotropic characteristics of BP irrespective of graphene's optical conductivity. Furthermore, the heterogeneous pairs of 2D materials potentially provide alternative platforms to achieve beyond super-Planckian radiation.more » « less
An official website of the United States government
